Abstract

The objective of this study was to identify the main sources of variation in pesticide losses at field and catchment scales using the dual permeability model MACRO. Stochastic simulations of the leaching of the herbicide MCPA (4-chloro-2-methylphenoxyacetic acid) were compared with seven years of measured concentrations in a stream draining a small agricultural catchment and one year of measured concentrations at the outlet of a field located within the catchment. MACRO was parameterized from measured probability distributions accounting for spatial variability of soil properties and local pedotransfer functions derived from information gathered in field- and catchment-scale soil surveys. At the field scale, a single deterministic simulation using the means of the input distributions was also performed. The deterministic run failed to reproduce the summer outflows when most leaching occurred, and greatly underestimated pesticide leaching. In contrast, the stochastic simulations successfully predicted the hydrologic response of the field and catchment and there was a good resemblance between the simulations and measured MCPA concentrations at the field outlet. At the catchment scale, the stochastic approach underestimated the concentrations of MCPA in the stream, probably mostly due to point sources, but perhaps also because the distributions used for the input variables did not accurately reflect conditions in the catchment. Sensitivity analyses showed that the most important factors affecting MACRO modeled diffuse MCPA losses from this catchment were soil properties controlling macropore flow, precipitation following application, and organic carbon content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.