Abstract

Background Cytofluorometric analysis allows single-cell resolution of all-or-none programmed cell death (apoptosis) responses and permits direct measurement of cumulative frequency distributions (CFDs) of apoptosis sensitivity from which the median apoptosis tolerance can be estimated. Robust estimation of susceptibility to apoptosis within neoplastic cell populations provides a means of either accurately determining pharmacologically induced changes in apoptosis sensitivity or comparing cell population responses to different apoptosis inducers. Methods Experimentally determined CFDs for VP-16 (etoposide)-induced apoptosis were measured by phosphotidylserine surface expression and mitochondrial membrane potential dissipation (ΔΨm) in BV173 leukemia cells. CFDs were modelled by a modified Hill equation using a four-parameter nonlinear regression from which median apoptosis tolerance (K) was estimated. Results Median apoptosis tolerance (K) was estimated from nonlinear regression analysis of CFDs for ΔΨm collapse and loss of membrane asymmetry. The error distribution of K determined from nonlinear regression analysis of 100 simulated CFDs was shown to exhibit an asymmetrical distribution. The asymmetrical likelihood intervals for K were computed iteratively, thereby providing a measure of experimental error. Conclusions A distribution-based approach to apoptosis assay using multivariate flow analysis offers a powerful, quantitative technique for investigating the phenotypical basis of neoplastic cell responsiveness to apoptosis therapy, permitting separation of cell populations on the basis of apoptosis susceptibility. Cytometry 39:266–274, 2000 © 2000 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.