Abstract

For the simulation of practical frequency-diversity wireless communication systems, such as frequency-hopping systems, multicarrier code-division multiple-access systems, and orthogonal frequency-division multiplexing systems, it is often desirable to produce multiple Rayleigh fading processes with given frequency correlation properties. In this paper, a novel stochastic wide-sense stationary sum-of-sinusoids channel simulator is proposed to emulate frequency-correlated wideband fading channels, where the frequency correlation properties are controlled by only adjusting the constant phases. Closed-form expressions are provided for all the parameters of the simulation model. This enables us to investigate analytically the overall correlation properties (not only the correlation coefficients) of the simulated processes with respect to both time separation and frequency separation. It is shown that the wideband channel simulator will be reduced to a narrowband Rayleigh fading-channel simulator by removing the frequency selectivity. Furthermore, the COST 207 typical-urban and rural-area channels are applied to evaluate the performance of the resulting wideband and narrowband channel simulators, respectively. The correlation properties of the simulation models approach the desired ones of the underlying reference models as the number of exponential functions tends to infinity, while very good approximations are achieved with the chosen limited number of exponential functions

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.