Abstract
This paper presents two stochastic model predictive control methods for linear time-invariant systems subject to unbounded additive uncertainties. The new methods are developed by formulating the chance constraints into deterministic form, which are treated in analogy with robust constraints, by using the probabilistic reachable set. The first one is the time-varying tube-based stochastic model predictive control algorithm, which is designed by employing the time-varying probabilistic reachable sets as tubes. The second one is the constant tube-based stochastic model predictive control algorithm, which is developed by enforcing a constant tightened constraint in the entire prediction horizon. In addition, the soft constraints are proposed to associate with the state initialization in the algorithms to enhance the feasibility. The algorithm feasibility and closed-loop stability results are provided. The efficacy of the approaches is demonstrated by means of numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.