Abstract

Summary Control of drinking water networks is an arduous task, given their size and the presence of uncertainty in water demand. It is necessary to impose different constraints for ensuring a reliable water supply in the most economic and safe ways. To cope with uncertainty in system disturbances due to the stochastic water demand/consumption and optimize operational costs, this paper proposes three stochastic model predictive control (MPC) approaches, namely, chance-constrained MPC, tree-based MPC, and multiple-scenario MPC. A comparative assessment of these approaches is performed when they are applied to real case studies, specifically, a sector and an aggregate version of the Barcelona drinking water network in Spain. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.