Abstract

The stochastic model of spray formation in the vicinity of the air-blast atomizer has been described and assessed by comparison with measurements. In this model, the 3D configuration of a continuous liquid core is simulated by spatial trajectories of specifically introduced stochastic particles. The stochastic process is based on the assumption that due to a high Weber number, the exiting continuous liquid jet is depleted in the framework of statistical universalities of a cascade fragmentation under scaling symmetry. The parameters of the stochastic process have been determined according to observations from Lasheras's, Hopfinger's and Villermaux's scientific groups. The spray formation model, based on the computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region, is combined with the large-eddy simulation (LES) in the coaxial gas jet. Comparison with measurements reported in the literature for different values of the gas-to-liquid dynamic pressure ratio showed that the model predicts correctly the distribution of liquid in the close-to-injector region, the mean length of the liquid core, the spray angle and the typical size of droplets in the far field of spray.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call