Abstract
Stochastic local search (SLS) methods are heuristic-based algorithms that have gained in popularity for their efficiency and robustness when solving very large and complex problems from various areas of artificial intelligence. This study aims to gain insights into SLS methods for solving the Partial Max-SAT (PMSAT) problem. The PMSAT is an NP-Hard problem, an optimization variant of the Propositional Boolean Satisfiability (SAT) problem, that has importance in theory and practice. Many real-world problems including timetabling, scheduling, planning, routing, and software debugging can be reduced to the PMSAT problem. Modern PMSAT solvers are able to solve practical instances with hundreds of thousands to millions of variables and clauses. However, performance of PMSAT solvers are still limited for solving some benchmark instances. In this paper, we present, investigate, and analyze state-of-the-art SLS methods for solving the PMSAT problem. An experimental evaluation is presented based on the MAX-SAT evaluations from 2014 to 2019. The results of this evaluation study show that the currently best performing SLS methods for the PMSAT problem fall into three categories: distinction-based, configuration checking-based, and dynamic local search methods. Very good performance was reported for the dynamic local search based method. The paper gives a detailed picture of the performance of SLS solvers for the PMSAT problem, aims to improve our understanding of their capabilities and limitations, and identifies future research directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.