Abstract
The electrochemical breakdown of a metal oxide film can directly affect the performance of functional electrochemical devices. However, revealing the structural insight into the breakdown sites is challenging because of heterogeneity: different breakdown sites are spatially distributed over the surface. Herein, we combine scanning electrochemical cell microscopy with identical-location microscopies to reveal the heterogeneity in the breakdown of NiO film on Ni in a site-by-site manner. Local critical breakdown potential varies by ∼500 mV, corresponding to an excess energy of 0.02-0.12 J/m2. Correlative composition imaging using time-of-flight secondary ion mass spectrometry shows Ni crystal grains with thinner NiO films are more resistant to breakdown. This high resistance is explained using classical nucleation theory, where the electrical energy is affected by the film thickness through the local interfacial capacitance. The correlative imaging approach overcomes the issue of heterogeneity, providing conclusive insight into the stability of the electrochemical interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.