Abstract
We consider the problem of makespan minimization on unrelated machines when job sizes are stochastic. The goal is to find a fixed assignment of jobs to machines, to minimize the expected value of the maximum load over all the machines. For the identical-machines special case when the size of a job is the same across all machines, a constant-factor approximation algorithm has long been known. Our main result is the first constant-factor approximation algorithm for the general case of unrelated machines. This is achieved by (i) formulating a lower bound using an exponential-size linear program that is efficiently computable and (ii) rounding this linear program while satisfying only a specific subset of the constraints that still suffice to bound the expected makespan. We also consider two generalizations. The first is the budgeted makespan minimization problem, where the goal is to minimize the expected makespan subject to scheduling a target number (or reward) of jobs. We extend our main result to obtain a constant-factor approximation algorithm for this problem. The second problem involves q-norm objectives, where we want to minimize the expected q-norm of the machine loads. Here we give an [Formula: see text]-approximation algorithm, which is a constant-factor approximation for any fixed q.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.