Abstract

The a posteriori stopping rule plays a significant role in the design of efficient stochastic algorithms for various tasks in computational mathematics, such as inverse problems, optimization, and machine learning. Through the lens of classical regularization theory, this paper describes a novel analysis of Morozov’s discrepancy principle for the stochastic generalized Landweber iteration and its continuous analog of generalized stochastic asymptotical regularization. Unlike existing results relating to convergence in probability, we prove the strong convergence of the regularization error using tools from stochastic analysis, namely the theory of martingales. Numerical experiments are conducted to verify the convergence of the discrepancy principle and demonstrate two new capabilities of stochastic generalized Landweber iteration, which should also be valid for other stochastic/statistical approaches: improved accuracy by selecting the optimal path and the identification of multi-solutions by clustering samples of obtained approximate solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.