Abstract

Stochastic programs with recourse provide an effective modeling paradigm for sequential decision problems with uncertain or noisy data, when uncertainty can be modeled by a discrete set of scenarios. In two-stage problems the decision variables are partitioned into two groups: a set of structural, first-stage decisions, and a set of second-stage, recourse decisions. The structural decisions are scenario-invariant, but the recourse decisions are scenario-dependent and can vary substantially across scenarios. In several applications it is important to restrict the variability of recourse decisions across scenarios, or to investigate the tradeoffs between the stability of recourse decisions and expected cost of a solution. We present formulations of stochastic programs with restricted recourse that trade off recourse stability with expected cost. The models generate a sequence of solutions to which recourse robustness is progressively enforced via parameterized, satisficing constraints. We investigate the behavior of the models on several test cases, and examine the performance of solution procedures based on the primal-dual interior point method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.