Abstract

Dynamical systems with $\epsilon$ small random perturbations appear in both continuous mechanical motions and discrete stochastic chemical kinetics. The present work provides a detailed analysis of the central limit theorem (CLT), with a time-inhomogeneous Gaussian process, near a deterministic limit cycle in $\mathbb{R}^n$. Based on the theory of random perturbations of dynamical systems and the WKB approximation respectively, results are developed in parallel from both standpoints of stochastic trajectories and transition probability density and their relations are elucidated. We show rigorously the correspondence between the local Gaussian fluctuations and the curvature of the large deviation rate function near its infimum, connecting the CLT and the large deviation principle of diffusion processes. We study uniform asymptotic behavior of stochastic limit cycles through the interchange of limits of time $t\to\infty$ and $\epsilon\to 0$. Three further characterizations of stochastic limit cycle oscillators are obtained: (i) An approximation of the probability flux near the cycle; (ii) Two special features of the vector field for the cyclic motion; (iii) A local entropy balance equation along the cycle with clear physical meanings. Lastly and different from the standard treatment, the origin of the $\epsilon$ in the theory is justified by a novel scaling hypothesis via constructing a sequence of stochastic differential equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call