Abstract
We formulate a stochastic least-action principle for solutions of the incompressible Navier–Stokes equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem for the Navier–Stokes equation, recently established by Constantin and Iyer, which shows that this stochastic conservation law arises from particle-relabelling symmetry of the action. We discuss issues of irreversibility, energy dissipation, and the inviscid limit of Navier–Stokes solutions in the framework of the stochastic variational principle. In particular, we discuss the connection of the stochastic Kelvin Theorem with our previous “martingale hypothesis” for fluid circulations in turbulent solutions of the incompressible Euler equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.