Abstract
We study how long it takes for large populations of interacting agents to come close to Nash equilibrium when they adapt their behavior using a stochastic better reply dynamic. Prior work considers this question mainly for 2 × 2 games and potential games; here we characterize convergence times for general weakly acyclic games, including coordination games, dominance solvable games, games with strategic complementarities, potential games, and many others with applications in economics, biology, and distributed control. If players' better replies are governed by idiosyncratic shocks, the convergence time can grow exponentially in the population size; moreover, this is true even in games with very simple payoff structures. However, if their responses are sufficiently correlated due to aggregate shocks, the convergence time is greatly accelerated; in fact, it is bounded for all sufficiently large populations. We provide explicit bounds on the speed of convergence as a function of key structural parameters including the number of strategies, the length of the better reply paths, the extent to which players can influence the payoffs of others, and the desired degree of approximation to Nash equilibrium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.