Abstract
We introduce a sensitivity-based view to the area of learning and optimization of stochastic dynamic systems. We show that this sensitivity-based view provides a unified framework for many different disciplines in this area, including perturbation analysis, Markov decision processes, reinforcement learning, identification and adaptive control, and singular stochastic control; and that this unified framework applies to both the discrete event dynamic systems and continuous-time continuous-state systems. Many results in these disciplines can be simply derived and intuitively explained by using two performance sensitivity formulas. In addition, we show that this sensitivity-based view leads to new results and opens up new directions for future research. For example, the n th bias optimality of Markov processes has been established and the event-based optimization may be developed; this approach has computational and other advantages over the state-based approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.