Abstract

This paper proposes a two-tier last-mile delivery model that optimally selects mobile depot locations in advance of full information about the availability of crowd-shippers and then transfers packages to crowd-shippers for the final shipment to the customers. Uncertainty in crowd-shipper availability is incorporated by modeling the problem as a two-stage stochastic integer program. Enhanced decomposition solution algorithms including branch-and-cut and cut-and-project frameworks are developed. A risk-averse approach is compared against a risk-neutral approach by assessing conditional-value-at-risk. A detailed computational study based on the City of Toronto is conducted. The deterministic version of the model outperforms a capacitated vehicle routing problem on average by 20%. For the stochastic model, decomposition algorithms usually discover near-optimal solutions within two hours for instances up to a size of 30 mobile depot locations, 40 customers, and 120 crowd-shippers. The cut-and-project approach outperforms the branch-and-cut approach by up to 85% in the risk-averse setting in certain instances. The stochastic model provides solutions that are 3.35%–6.08% better than the deterministic model, and the improvements are magnified with increased uncertainty in crowd-shipper availability. A risk-averse approach leads the operator to send more mobile depots or postpone customer deliveries to reduce the risk of high penalties for nondelivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call