Abstract

We present a new model for fluid flow and solute transport in porous media, which employs smoothed particle hydrodynamics to solve a Langevin equation for flow and dispersion in porous media. This allows for effective separation of the advective and diffusive mixing mechanisms, which is absent in the classical dispersion theory that lumps both types of mixing into dispersion coefficient. The classical dispersion theory overestimates both mixing-induced effective reaction rates and the effective fractal dimension of the mixing fronts associated with miscible fluid Rayleigh-Taylor instabilities. We demonstrate that the stochastic (Langevin equation) model overcomes these deficiencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call