Abstract
We study a stochastic model of transcription kinetics in order to characterize the distributions of transcriptional delay and of elongation rates. Transcriptional delay is the time which elapses between the binding of RNA polymerase to a promoter sequence and its dissociation from the DNA template strand with consequent release of the transcript. Transcription elongation is the process by which the RNA polymerase slides along the template strand. The model considers a DNA template strand with one promoter site and n nucleotide sites, and five types of reaction processes, which we think are key ones in transcription. The chemical master equation is a set of ordinary differential equations in 3(n) variables, where n is the number of bases in the template. This model is too huge to be handled if n is large. We manage to get a reduced Markov model which has only 2n independent variables and can well approximate the original dynamics. We obtain a number of analytical and numerical results for this model, including delay and transcript elongation rate distributions. Recent studies of single-RNA polymerase transcription by using optical-trapping techniques raise an issue of whether the elongation rates measured in a population are heterogeneous or not. Our model implies that in the cases studied, different RNA polymerase molecules move at different characteristic rates along the template strand. We also discuss the implications of this work for the mathematical modeling of genetic regulatory circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.