Abstract
We propose a stochastic iteration approach to signal set design. Four practical stochastic iterative algorithms are proposed with respect to equal and average energy constraints and sequential and batch modes. By simulation, a new optimal signal set, the L2 signal set (consisting of a regular simplex set of three signals and some zero signals), is found under the strong simplex conjecture (SSC) condition (equal a priori probability and average energy constraint) at low signal-to-noise ratios (SNR). The optimality of the L1 signal set, the confirmation of the weak simplex conjecture, and two of Dunbridge's (1967) theorems are some of the results obtained by simulations. The influence of SNR and a priori probabilities on the signal sets is also investigated via simulation. As an application to practical communication system design, the signal sets of eight two-dimensional (2-D) signals are studied by simulation under the SSC condition. Two signal sets better than 8-PSK are found. Optimal properties of the L2 signal set are analyzed under the SSC condition at low SNRs. The L2 signal set is proved to be uniquely optimal in 2-D space. The class of signal sets S(M, K) (consisting of a regular simplex set of K signals and M-K zero signals) is analyzed. It is shown that any of the signal sets S(M, K) for 3/spl les/K/spl les/M-1 disproves the strong simplex conjecture for M/spl ges/4, and if M/spl ges/7, S(M, 2) (the L1 signal set) also disproves the strong simplex conjecture. It is proved that the L2 signal set is the unique optimal signal set in the class of signal sets S(M, K) for all M/spl ges/4. Several results obtained by Steiner (see ibid., vol.40, no.5, p.721-31, 1994) for all M/spl ges/7 are extended to all M/spl ges/4. Finally, we show that for M/spl ges/7, there exists an integer K'<M such that any of the signal sets consisting of K signals equally spaced on a circle and M-K zero signals, for 4/spl les/K/spl les/K', also disprove the strong simplex conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.