Abstract

We report on single atomic zero-dimensional (0D) pores fabricated using aberration-corrected scanning transmission electron microscopy (AC-STEM) in monolayer MoS2. Pores are comprised of a few atoms missing in the two-dimensional (2D) lattice (1-5 Mo atoms) of characteristic sizes from ∼0.5 to 1.2 nm, and pore edges directly probed by AC-STEM to map the atomic structure. We categorize them into ∼30 geometrically possible zigzag, armchair, and mixed configurations. While theoretical studies predict that transport properties of 2D pores in this size range depend strongly on pore size and their atomic configuration, 0D pores show an average conductance in the range from ∼0.6-1 nS (bias up to 0.1 V), similar to biological pores. In some devices, the current was immeasurably small and/or pores could not be wet. Furthermore, current-voltage (I-V) characteristics are largely independent of bulk molarity (10 mM to 3 M KCl) and the type of cation (K+, Li+, Mg2+). This work lays the experimental foundation for understanding of the confinement effects possible in atomic-scale 2D material pores and the realization of solid-state analogues of ion channels in biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call