Abstract
Financial risk due to geological uncertainty is a major barrier for geothermal development. Production from a geothermal well depends on the unknown location of subsurface geological structures, such as faults that contain hydrothermal fluids. Traditionally, geoscientists collect many different datasets, interpret the datasets manually, and create a single model estimating faults' locations. This method, however, does not provide information about the uncertainty regarding the location of faults and often does not fully respect all observed datasets. Previous researchers investigated the use of stochastic inversion schemes for addressing geological uncertainty, but often at the expense of geologic realism. In this paper, we present algorithms and open-source code to stochastically invert five typical datasets for creating geologically realistic structural models. Using a case study with real data from the Patua Geothermal Field, we show that these inversion algorithms are successful in finding an ensemble of structural models that are geologically realistic and match the observed data sufficiently. Geoscientists can use this ensemble of models to optimize reservoir management decisions given structural uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.