Abstract
Recently, we considered the g-subdiffusion equation with a fractional Caputo time derivative with respect to another function g, T. Kosztołowicz et al. [Phys. Rev. E 104, 014118 (2021)2470-004510.1103/PhysRevE.104.014118]. This equation offers different possibilities for modeling diffusion such as a process in which a type of diffusion evolves continuously over time. However, the equation has not been derived from a stochastic model and the stochastic interpretation of g subdiffusion is still unknown. In this Letter, we show the stochastic foundations of this process. We derive the equation by means of a modified continuous time random walk model. An interpretation of the g-subdiffusion process is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.