Abstract

In this paper, we introduce new methods for convex optimization problems with stochastic inexact oracle. Our first method is an extension of the Intermediate Gradient Method proposed by Devolder, Glineur and Nesterov for problems with deterministic inexact oracle. Our method can be applied to problems with composite objective function, both deterministic and stochastic inexactness of the oracle, and allows using a non-Euclidean setup. We estimate the rate of convergence in terms of the expectation of the non-optimality gap and provide a way to control the probability of large deviations from this rate. Also we introduce two modifications of this method for strongly convex problems. For the first modification, we estimate the rate of convergence for the non-optimality gap expectation and, for the second, we provide a bound for the probability of large deviations from the rate of convergence in terms of the expectation of the non-optimality gap. All the rates lead to the complexity estimates for the proposed methods, which up to a multiplicative constant coincide with the lower complexity bound for the considered class of convex composite optimization problems with stochastic inexact oracle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call