Abstract

Inhibition kinetics of single-beta-galactosidase molecules with the slow-binding inhibitor d-galactal have been characterized by segregating individual enzyme molecules in an array of 50,000 ultra small reaction containers and observing substrate turnover changes with fluorescence microscopy. Inhibited and active states of beta-galactosidase could be clearly distinguished, and the large array size provided very good statistics. With a pre-steady-state experiment, we demonstrated the stochastic character of inhibitor release, which obeys first-order kinetics. Under steady-state conditions, the quantitative detection of substrate turnover changes over long time periods revealed repeated inhibitor binding and release events, which are accompanied by conformational changes of the enzyme's catalytic site. We proved that the rate constants of inhibitor release and binding derived from stochastic changes in the substrate turnover are consistent with bulk-reaction kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.