Abstract

Abstract This paper discusses stochastic homogenization analysis of a periodic porous material fabricated using a rapid prototyping technique. A rapid prototyping system will be helpful to fabricate an order-made structure stably consisting of a porous material having a desired void distribution than a general porous material, but the influence of a geometrical random variation of pores should be still investigated, because some geometrical parameters are difficult to be perfectly controlled. In this paper, the stochastic homogenization analysis is performed for evaluation of the probabilistic characteristics of the homogenized elastic properties for a geometrical random variation in microstructure. The perturbation-based approach with the finite difference scheme is proposed for stochastic homogenization analysis of the porous material considering a parametric geometrical random variation. Influence of the random variations of microscopic geometry parameters on the homogenized elastic property is investigated, and accuracy of the finite difference based perturbation approach is discussed. In addition, a numerical result is compared to the experimental result, and applicability of the stochastic homogenization analysis to a practical problem is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.