Abstract

We investigate a new approach to compute the gradients of artificial neural networks (ANNs), based on the so-called push-out likelihood ratio method. Unlike the widely used backpropagation (BP) method that requires continuity of the loss function and the activation function, our approach bypasses this requirement by injecting artificial noises into the signals passed along the neurons. We show how this approach has a similar computational complexity as BP, and moreover is more advantageous in terms of removing the backward recursion and eliciting transparent formulas. We also formalize the connection between BP, a pivotal technique for training ANNs, and infinitesimal perturbation analysis, a classic path-wise derivative estimation approach, so that both our new proposed methods and BP can be better understood in the context of stochastic gradient estimation. Our approach allows efficient training for ANNs with more flexibility on the loss and activation functions, and shows empirical improvements on the robustness of ANNs under adversarial attacks and corruptions of natural noises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.