Abstract

Stochastic gradient descent in continuous time (SGDCT) provides a computationally efficient method for the statistical learning of continuous-time models, which are widely used in science, engineering, and finance. The SGDCT algorithm follows a (noisy) descent direction along a continuous stream of data. SGDCT performs an online parameter update in continuous time, with the parameter updates θt satisfying a stochastic differential equation. We prove that limt→∞ ∇g(θt) = 0 where g is a natural objective function for the estimation of the continuous-time dynamics. The convergence proof leverages ergodicity by using an appropriate Poisson equation to help describe the evolution of the parameters for large times. SGDCT can also be used to solve continuous-time optimization problems, such as American options. For certain continuous-time problems, SGDCT has some promising advantages compared to a traditional stochastic gradient descent algorithm. As an example application, SGDCT is combined with a deep neural network to price high-dimensional American options (up to 100 dimensions).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.