Abstract

Stochastic gradient ascent learning exploits correlations of parameter variations with overall success of a system. This algorithmic idea has been related to neuronal network learning by postulating eligibility traces at synapses, which make them selectable for synaptic changes depending on later reward signals ([1] and [2]). Formalizations of the synaptic and neuronal dynamics supporting gradient ascent learning in terms of differential equations exhibit strong similarities with a recent formulation of spike timing dependent plasticity (STDP) [3] when it is combined with a reward signal. Here we present conditions under which reward modulated STDP is in fact guaranteed to maximize expected reward. We present numerical simulations underlining the relevance of realistic STDP models for reward dependent learning. In particular, we find that the nonlinear adaptation to pre- and post-synaptic activities of STDP [3] contributes to stable learning. Figure 1 Learning the XOR function with a reward modulated STDP rule. Left: Output activity versus training episode in a feed forward network with Poisson-like neurons (2 input nodes, 10 hidden nodes and 1 output node). The output activity for the [true, false] ...

Highlights

  • Stochastic gradient ascent learning exploits correlations of parameter variations with overall success of a system

  • Formalizations of the synaptic and neuronal dynamics supporting gradient ascent learning in terms of differential equations exhibit strong similarities with a recent formulation of spike timing dependent plasticity (STDP) [3] when it is combined with a reward signal

  • We present conditions under which reward modulated STDP is guaranteed to maximize expected reward

Read more

Summary

Introduction

Stochastic gradient ascent learning exploits correlations of parameter variations with overall success of a system.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.