Abstract

A class of variable step-size learning algorithms for complex-valued nonlinear adaptive finite impulse response (FIR) filters is proposed. To achieve this, first a general complex-valued nonlinear gradient-descent (CNGD) algorithm with a fully complex nonlinear activation function is derived. To improve the convergence and robustness of CNGD, we further introduce a gradient-adaptive step size to give a class of variable step-size CNGD (VSCNGD) algorithms. The analysis and simulations show the proposed class of algorithms exhibiting fast convergence and being able to track nonlinear and nonstationary complex-valued signals. To support the derivation, an analysis of stability and computational complexity of the proposed algorithms is provided. Simulations on colored, nonlinear, and real-world complex-valued signals support the analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.