Abstract

In this paper, we propose a new algorithm for pairwise rigid point set registration with unknown point correspondences. The main properties of our method are noise robustness, outlier resistance and global optimal alignment. The problem of registering two point clouds is converted to a minimization of a nonlinear cost function. We propose a new cost function based on an inverse distance kernel that significantly reduces the impact of noise and outliers. In order to achieve a global optimal registration without the need of any initial alignment, we develop a new stochastic approach for global minimization. It is an adaptive sampling method which uses a generalized BSP tree and allows for minimizing nonlinear scalar fields over complex shaped search spaces like, e.g., the space of rotations. We introduce a new technique for a hierarchical decomposition of the rotation space in disjoint equally sized parts called spherical boxes. Furthermore, a procedure for uniform point sampling from spherical boxes is presented. Tests on a variety of point sets show that the proposed registration method performs very well on noisy, outlier corrupted and incomplete data. For comparison, we report how two state-of-the-art registration algorithms perform on the same data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.