Abstract

Beam management is central in the operation of dense 5G cellular networks. Focusing the energy radiated to mobile terminals (MTs) by increasing the number of beams per cell increases signal power and decreases interference, and has hence the potential to bring major improvements on area spectral efficiency (ASE). This benefit, however, comes with unavoidable overheads that increase with the number of beams and the MT speed. This paper proposes a first system-level stochastic geometry model encompassing major aspects of the beam management problem: frequencies, antennas, and propagation; physical layer, wireless links, and coding; network geometry, interference, and resource sharing; sensing, signaling, and mobility management. This model leads to a simple analytical expression for the effective ASE that the typical user gets in this context. This in turn allows one to find, for a wide variety of 5G network scenarios including millimeter wave (mmWave) and sub-6 GHz, the number of beams per cell that offers the best global trade-off between these benefits and costs. We finally provide numerical results that discuss the effects of different systemic trade-offs and performances of mmWave and sub-6 GHz 5G deployments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.