Abstract

This paper develops a stochastic geometry-based approach for the modeling and analysis of single- and multi-cluster wireless networks. We first define finite homogeneous Poisson point processes to model the number and locations of the transmitters in a confined region as a single-cluster wireless network. We study the coverage probability for a reference receiver for two strategies; closest-selection, where the receiver is served by the closest transmitter among all transmitters, and uniform-selection, where the serving transmitter is selected randomly with uniform distribution. Second, using Matern cluster processes, we extend our model and analysis to multi-cluster wireless networks. Here, two types of receivers are modeled, namely, closed- and open-access receivers. Closed-access receivers are distributed around the cluster centers of the transmitters according to a symmetric normal distribution and can be served only by the transmitters of their corresponding clusters. Open-access receivers, on the other hand, are placed independently of the transmitters and can be served by all transmitters. In all cases, the link distance distribution and the Laplace transform (LT) of the interference are derived. We also derive closed-form lower bounds on the LT of the interference for single-cluster wireless networks. The impact of different parameters on the performance is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.