Abstract

Using stochastic geometry tools, we develop a comprehensive framework to analyze the downlink performance of various types of users (e.g., users served by direct base station (BS) transmissions and indirect intelligent reflecting surface (IRS)-assisted transmissions) in a cellular network with multiple BSs and IRSs. For the proposed users, we provide the approximate expressions for the performance in terms of coverage probability, ergodic capacity, and energy efficiency (EE). The proposed stochastic geometry framework can capture the impact of channel fading, locations of BSs and IRSs, arbitrary phase-shifts and interference experienced by a typical user supported by direct transmission and/or IRS-assisted transmission. For IRS-assisted transmissions, we first model approximate the desired signal power from the nearest IRS as a sum of scaled generalized gamma (GG) random variables whose parameters are functions of the IRS phase shifts. Then, we derive the Laplace Transform (LT) of the received signal power in a closed form. Also, we approximate the aggregate interference from multiple IRSs as the sum of normal random variables. Then, we derive the LT of the aggregate interference from all IRSs and BSs. The derived LT expressions are used to calculate coverage probability, ergodic capacity, and EE for users served by direct BS transmissions as well as users served by IRS-assisted transmissions. Finally, we derive the overall network coverage probability, ergodic capacity, and EE based on the fraction of direct and IRS-assisted users, which is defined as a function of the deployment density of IRSs, as well as blockage probability of direct transmission links. Numerical results validate the derived analytical expressions and extract useful insights related to the number of IRS elements, large-scale deployment of IRSs and BSs, and the impact of IRS interference on direct transmissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call