Abstract

In this paper, we propose a stochastic geometric iterative method (S-GIM) to approximate the high-resolution 3D models by finite loop subdivision surfaces. Given an input mesh as the fitting target, the initial control mesh is generated using the mesh simplification algorithm. Then, our method adjusts the control mesh iteratively to make its finite loop subdivision surface approximate the input mesh. In each geometric iteration, we randomly select part of points on the subdivision surface to calculate the difference vectors and distribute the vectors to the control points. Finally, the control points are updated by adding the weighted average of these difference vectors. We prove the convergence of S-GIM and verify it by demonstrating error curves in the experiment. In addition, compared with existing geometric iterative methods, S-GIM has a shorter running time under the same number of iteration steps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.