Abstract

A stochastic fuzzy control is proposed by applying the stochastic control theory, instead of using a traditional fuzzy reasoning. We first solve a control problem of one-step predicted output tracking for linear stochastic systems. Next, we consider a dynamic multiple model adaptive control (MMAC) for the initial data distribution, under the uncertainties of the initial states. We further consider a static MMAC that can be applied for a case of completely unknown plants. It is then shown that a stochastic fuzzy control has some Gaussian potential functions as membership functions and can assign some a priori probabilities to the fuzzy sets or to the control rules, if the probability density function with respect to the output error is replaced by simple characteristic function. It is also cleared that the stochastic fuzzy control becomes a fuzzy control by assuming that all of the a priori probabilities are set to be equal at any control instant. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.