Abstract

This paper presents a stochastic fracture response and crack growth analysis of mixed-mode stress intensity factors (MSIFs) for edge cracked laminated composite beams subjected to uniaxial, uniform tensile, shear and combined stresses with random system properties. The randomness in material properties of the composite material, lamination angle, laminate thickness, the crack length and the crack angle are modeled as both input uncorrelated and correlated random variables. An extended finite element method (XFEM) through the so-called M-interaction approach combined with the second-order perturbation technique (SOPT) and Monte Carlo simulation (MCS) is used to obtain the statistics in terms of the mean and coefficient of variation (COV) of MSIFs for edge cracked laminated composite beams. The effect of crack propagation on the MSIFs in the presence of tensile, shear and combined stresses using a global tracking algorithm is also investigated. The results using the present approach are compared with the available published results. A good agreement is seen whenever alternative results are available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call