Abstract

We study the stochastic force dynamics of a model microswimmer (Chlamydomonas reinhardtii), using a combined experimental, theoretical, and numerical approach. While swimming dynamics have been extensively studied using hydrodynamic approaches, which infer forces from the viscous flow field, we directly measure the stochastic forces generated by the microswimmer using an optical trap via the photon momentum method. We analyze the force dynamics by modeling the microswimmer as a self-propelled particle, à la active matter, and analyze its energetics using methods from stochastic thermodynamics. We find complex oscillatory force dynamics and power dissipation on the order of 10^{6}k_{B}T/s(∼fW).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call