Abstract

An experiment on a flat rectangular plate facing a uniform flow at $Re=264\,000$ shows the importance of the base pressure loading on the asymmetric static modes of the turbulent wake. The plate is free to rotate around its short symmetry axis. For plates with aspect ratio ${\it\kappa}<6$, the angular position exhibits strong random discontinuities between steady states of non-zero angles. The steady states have long time durations, more than one order of magnitude greater than the convective time scale. The discontinuities, comparable to rare and violent events, are due to strong fluid forces associated with a drastic global change of the three-dimensional wake – mainly the switching between the static asymmetric modes. A clear transition occurs at ${\it\kappa}=6$, for which the angular fluctuations are minimum, leading for ${\it\kappa}>6$ to a classical fluid structure interaction with periodic fluctuations. The transition is supported by a recent global stability analysis of rectangular fixed plates in the laminar regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.