Abstract

There is no satisfactory model to explain the mean velocity profile of the whole turbulent layer in canonical wall-bounded flows. In this paper, a mean velocity profile expression is proposed for wall-bounded turbulent flows based on a recently proposed stochastic representation of fluid flows dynamics. This original approach, called modeling under location uncertainty, introduces in a rigorous way a subgrid term generalizing the eddy-viscosity assumption and an eddy-induced advection term resulting from turbulence inhomogeneity. This latter term gives rise to a theoretically well-grounded model for the transitional zone between the viscous sublayer and the turbulent sublayer. An expression of the small-scale velocity component is also provided in the viscous zone. Numerical assessments of the results are provided for turbulent boundary layer flows, pipe flows and channel flows at various Reynolds numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call