Abstract

In this article, the finite-time H∞ state estimation problem is addressed for a class of discrete-time neural networks with semi-Markovian jump parameters and time-varying delays. The focus is mainly on the design of a state estimator such that the constructed error system is stochastically finite-time bounded with a prescribed H∞ performance level via finite-time Lyapunov stability theory. By constructing a delay-product-type Lyapunov functional, in which the information of time-varying delays and characteristics of activation functions are fully taken into account, and using the Jensen summation inequality, the free weighting matrix approach, and the extended reciprocally convex matrix inequality, some sufficient conditions are established in terms of linear matrix inequalities to ensure the existence of the state estimator. Finally, numerical examples with simulation results are provided to illustrate the effectiveness of our proposed results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.