Abstract

A conditional copula function based downscaling model in a fully Bayesian framework is developed in this study to evaluate future changes in intensity–duration frequency (IDF) curves in South Korea. The model incorporates a quantile mapping approach for bias correction while integrated Bayesian inference allows accounting for parameter uncertainties. The proposed approach is used to temporally downscale expected changes in daily rainfall, inferred from multiple CORDEX-RCMs based on Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios, into sub-daily temporal scales. Among the CORDEX-RCMs, a noticeable increase in rainfall intensity is observed in the HadGem3-RA (9%), RegCM (28%), and SNU_WRF (13%) on average, whereas no noticeable changes are observed in the GRIMs (−2%) for the period 2020–2050. More specifically, a 5–30% increase in rainfall intensity is expected in all of the CORDEX-RCMs for 50-year return values under the RCP 8.5 scenario. Uncertainty in simulated rainfall intensity gradually decreases toward the longer durations, which is largely associated with the enhanced strength of the relationship with the 24-h annual maximum rainfalls (AMRs). A primary advantage of the proposed model is that projected changes in future rainfall intensities are well preserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.