Abstract
In this paper linear stochastic evolution equations driven by infinite-dimensional fractional Brownian motion are studied. A necessary and sufficient condition for the existence and uniqueness of the solution is established and the spatial regularity of the solution is analyzed; separate proofs are required for the cases of Hurst parameter above and below 1/2. The particular case of the Laplacian on the circle is discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.