Abstract

The quality of coverage achieved by mobile sensors depends on the velocity, mobility pattern, number of mobile sensors deployed and the dynamics of the phenomenon being sensed. The gains attained by mobile sensors over static sensors and the optimal motion strategies for mobile sensors are not well understood. In this paper we consider the following event capture problem: The events of interest arrive at certain points in the sensor field and disappear according to known arrival and departure time distributions. An event is said to be captured if it is sensed by one of the mobile sensors before it fades away. We analyze how the quality of coverage scales with velocity and number of mobile sensors. We present algorithm for the motion planning problem: for sensors with fixed speed, what is the minimum number of sensors required to satisfy a bound on the event loss probability? For the minimum sensor problem, when the robots are restricted to move along a line our algorithm return the number of sensors used is within a factor of two of the optimal solution. Simulation experiments show that the Superiority of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.