Abstract

BackgroundDistance-based phylogenetic reconstruction methods use evolutionary distances between species in order to reconstruct the phylogenetic tree spanning them. There are many different methods for estimating distances from sequence data. These methods assume different substitution models and have different statistical properties. Since the true substitution model is typically unknown, it is important to consider the effect of model misspecification on the performance of a distance estimation method.ResultsThis paper continues the line of research which attempts to adjust to each given set of input sequences a distance function which maximizes the expected topological accuracy of the reconstructed tree. We focus here on the effect of systematic error caused by assuming an inadequate model, but consider also the stochastic error caused by using short sequences. We introduce a theoretical framework for analyzing both sources of error based on the notion of deviation from additivity, which quantifies the contribution of model misspecification to the estimation error. We demonstrate this framework by studying the behavior of the Jukes-Cantor distance function when applied to data generated according to Kimura’s two-parameter model with a transition-transversion bias. We provide both a theoretical derivation for this case, and a detailed simulation study on quartet trees.ConclusionsWe demonstrate both analytically and experimentally that by deliberately assuming an oversimplified evolutionary model, it is possible to increase the topological accuracy of reconstruction. Our theoretical framework provides new insights into the mechanisms that enables statistically inconsistent reconstruction methods to outperform consistent methods.

Highlights

  • Phylogenetic reconstruction is the task of determining the topology of an evolutionary tree underlying a given set of samples using sequence data extracted from them

  • Background we provide a brief exposition of DNA substitution models and substitution rate functions used for distance estimation

  • In this paper we explored the basic properties of methods for estimating evolutionary distances, and studied how these properties affect the accuracy of distance-based phylogenetic reconstruction

Read more

Summary

Results

This paper continues the line of research which attempts to adjust to each given set of input sequences a distance function which maximizes the expected topological accuracy of the reconstructed tree. We introduce a theoretical framework for analyzing both sources of error based on the notion of deviation from additivity, which quantifies the contribution of model misspecification to the estimation error. We demonstrate this framework by studying the behavior of the Jukes-Cantor distance function when applied to data generated according to Kimura’s two-parameter model with a transition-transversion bias. We provide both a theoretical derivation for this case, and a detailed simulation study on quartet trees

Conclusions
Introduction
Background
Felsenstein J

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.