Abstract

Solid fuel ducted rockets operate with two-stage combustion. The first stage generates burnt products from the combustion of a fuel-rich solid propellant. In the second stage, those combustion products react with air and are ejected through a nozzle to produce thrust. The combustion efficiency of such a device strongly influences its performance and depends on the composition of the rich-fuel-burnt pyrolysis products. This study investigates the sensitivity of carbon, hydrogen, oxygen, and nitrogen (CHON) solid fuels’ burnt product composition to the fuel properties, composition, and heat of formation. The calculations are performed assuming adiabatic, isobaric chemical equilibrium on synthetic species. Existing species’ properties constrain the properties of the synthetic species. The trends of formation of the main species observed in gas generators, i.e., H2, CH4, CO, N2, CO2, H2O, and solid carbon, are presented. The sensitivity of the molar concentration ratio ξ of H2 to CH4 to the oxygen balance and propulsive properties is compared with an example of gas generator propellants. Recommendations for the possible optimization of fuel composition are formulated. For blends of the existing CHON species reported in the literature, it is shown that improving ξ is only possible by degrading the specific impulse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.