Abstract
In this paper tools are developed to analyse a recently proposed random matrix model of communication networks that employ additive-increase multiplicative-decrease (AIMD) congestion control algorithms. We investigate properties of the Markov process describing the evolution of the window sizes of network users. Using paracontractivity properties of the matrices involved in the model, it is shown that the process has a unique invariant probability, and the support of this probability is characterized. Based on these results we obtain a weak law of large numbers for the average distribution of resources between the users of a network. This shows that under reasonable assumptions such networks have a well-defined stochastic equilibrium. ns2 simulation results are discussed to validate the obtained formulae. (The simulation program ns2, or network simulator, is an industry standard for the simulation of Internet dynamics.)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.