Abstract

This work is devoted to the study of conservative affine processes on the canonical state space $D = $R_+^m \times \R^n$, where $m + n > 0$. We show that each affine process can be obtained as the pathwise unique strong solution to a stochastic equation driven by Brownian motions and Poisson random measures. Then we study the long-time behavior of affine processes, i.e., we show that under first moment condition on the state-dependent and log-moment conditions on the state-independent jump measures, respectively, each subcritical affine process is exponentially ergodic in a suitably chosen Wasserstein distance. Moments of affine processes are studied as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.