Abstract
The linear noise approximation models the random fluctuations from the mean-field model of a chemical reaction that unfolds near the thermodynamic limit. Specifically, the fluctuations obey a linear Langevin equation up to order [Formula: see text], where [Formula: see text] is the size of the chemical system (usually the volume). In the presence of disparate timescales, the linear noise approximation admits a quasi-steady-state reduction referred to as the slow scale linear noise approximation (ssLNA). Curiously, the ssLNAs reported in the literature are slightly different. The differences in the reported ssLNAs lie at the mathematical heart of the derivation. In this work, we derive the ssLNA directly from geometric singular perturbation theory and explain the origin of the different ssLNAs in the literature. Moreover, we discuss the loss of normal hyperbolicity and we extend the ssLNA derived from geometric singular perturbation theory to a non-classical singularly perturbed problem. In so doing, we disprove a commonly-accepted qualifier for the validity of stochastic quasi-steady-state approximation of the Michaelis -Menten reaction mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.