Abstract
We investigate the total stochastic entropy production of a two-level bosonic open quantum system under protocols of time dependent coupling to a harmonic environment. These processes are intended to represent the measurement of a system observable, and consequent selection of an eigenstate, whilst the system is also subjected to thermalising environmental noise. The entropy production depends on the evolution of the system variables and their probability density function, and is expressed through system and environmental contributions. The continuous stochastic dynamics of the open system is based on the Markovian approximation to the exact, noise-averaged stochastic Liouville-von Neumann equation, unravelled through the addition of stochastic environmental disturbance mimicking a measuring device. Under the thermalising influence of time independent coupling to the environment, the mean rate of entropy production vanishes asymptotically, indicating equilibrium. In contrast, a positive mean production of entropy as the system responds to time dependent coupling characterises the irreversibility of quantum measurement, and a comparison of its production for two coupling protocols, representing connection to and disconnection from the external measuring device, satisfies a detailed fluctuation theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.