Abstract

A previously derived Brownian behavior (paper I) induced by the zero-point field is assumed to hold for a more realistic model. The statistical description of the particle in our model leads naturally to a probabilistic fluid-like description suitable for providing simple intuitive explanations for some well-publicized puzzles of classical stochastic theories like the nodes of the wave-function and the intrinsic spinning (so far nonquantized) of the particles. We confront our result with well-known recent analysis on fractal-like Brownian quantum paths and diffusion in quantum trajectories. It is shown that stochastic electrodynamics may lead to the diffusive fractal-like paths of the Schroedinger theory. A heuristic connection from this Brownian result to Schroedinger's phenomenology is also provided by the Lagrangian density of the probabilistic fluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call